Bovine herpesvirus 1 (BHV-1) envelope protein gE subcellular trafficking is contributed by two separate YXXL/Φ motifs within the cytoplasmic tail which together promote efficient virus cell-to-cell spread

Document Type


Publication Date



Bovine herpesvirus envelope glycoprotein E (gE) and, in particular, the gE cytoplasmic tail (CT) is a virulence determinant in cattle. Also, the gE CT contributes to virus cell-to-cell spread and anterograde neuronal transport. In this study, our goal was to map the gE CT sub-domains that contribute to virus cell-to-cell spread property. A panel of gE-CT specific mutant viruses was constructed and characterized, in vitro, with respect to their plaque phenotypes, gE recycling and gE basolateral membrane targeting. The results revealed that disruption of the tyrosine-based motifs, YTSL and YTVV, individually produced smaller plaque phenotypes than the wild type. However, they were slightly larger than the gE CT-null virus plaques. The Y467A mutation affected the gE endocytosis, gE trans-Golgi network (TGN) recycling, and gE virion incorporation properties. However, the Y563A mutation affected only the gE basolateral cell-surface redistribution function. Notably, the simultaneous Y467A/Y563A mutations produced gE CT-null virus-like plaque phenotypes.

Publication Source (Journal or Book title)


First Page


Last Page


This document is currently not available here.