In utero exposure to second-hand smoke activates pro-asthmatic and oncogenic miRNAs in adult asthmatic mice

Document Type

Article

Publication Date

4-1-2016

Abstract

Exposures to environmental pollutants contribute to dysregulated microRNA (miRNA) expression profiles, which have been implicated in various diseases. Previously, we reported aggravated asthmatic responses in ovalbumin (OVA)-challenged adult mice that had been exposed in utero to second-hand smoke (SHS). Whether in utero SHS exposure dysregulates miRNA expression patterns in the adult asthma model has not been investigated. Pregnant BALB/c mice were exposed (days 6-19 of pregnancy) to SHS (10 mg/m(3)) or HEPA-filtered air. All offspring were sensitized and challenged with OVA (19-23 weeks) before sacrifice. RNA samples extracted from lung homogenates, were subjected to RNA sequencing (RNA-seq). RNA-seq identified nine miRNAs that were most significantly up-regulated by in utero SHS exposure. Among these nine, miR-155-5p, miR-21-3p, and miR-18a-5p were also highly correlated with pro-asthmatic Th2 cytokine levels in bronchoalveolar lavage fluid. Further analysis indicated that these up-regulated miRNAs shared common chromosome locations, particularly Chr 11C, with pro-asthmatic genes. These three miRNAs have also been characterized as oncogenic miRNAs (oncomirs). We cross-referenced miRNA-mRNA expression profiles and identified 16 tumor suppressor genes that were down-regulated in the in utero-exposed offspring and that are predicted targets of the up-regulated oncomirs. In conclusion, in utero SHS exposure activates pro-asthmatic genes and miRNAs, which colocalize at specific chromosome locations, in OVA-challenged adult mice. The oncogenic characteristics of the miRNAs and putative miRNA-mRNA regulatory networks suggest that the synergistic effect of in utero SHS exposure and certain adult irritants may promote an oncogenic milieu in mouse lungs via inhibition of miRNA-regulated tumor suppressor genes.

Publication Source (Journal or Book title)

Environmental and molecular mutagenesis

First Page

190

Last Page

9

This document is currently not available here.

Share

COinS