Chronic Ethanol Feeding in Mice Decreases Expression of Genes for Major Structural Bone Proteins in a Nox4-Independent Manner

Authors

Kim B. Pedersen, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.).
Michelle L. Osborn, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.).
Alex C. Robertson, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.).
Ashlee E. Williams, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.).
James Watt, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.).
Alexandra Denys, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.).
Katrin Schröder, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.).
Martin J. Ronis, Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.) mronis@lsuhsc.edu.

Document Type

Article

Publication Date

6-1-2020

Abstract

Bone loss in response to alcohol intake has previously been hypothesized to be mediated by excessive production of reactive oxygen species via NADPH oxidase (Nox) enzymes. Nox4 is one of several Nox enzymes expressed in bone. We investigated the role of Nox4 in the chondro-osteoblastic lineage of the long bones in mice during normal chow feeding and during chronic ethanol feeding for 90 days. We generated mice with a genotype () allowing conditional knockout of Nox4 in the limb bud mesenchyme. Adult mice had 95% knockdown of Nox4 expression in the femoral shafts. For mice on regular chow, only whole-body Nox4 knockout mice had clearly increased cortical thickness and bone mineral density in the tibiae. When chronically fed a liquid diet with and without ethanol, conditional Nox4 knockout mice had slightly reduced dimensions of the cortical and trabecular regions of the tibiae ( < 0.1). The ethanol diet caused a significant reduction in cortical bone area and cortical thickness relative to a control diet without ethanol ( < 0.05). The ethanol diet further reduced gene expression of Frizzled related protein (Frzb), myosin heavy chain 3, and several genes encoding collagen and other major structural bone proteins ( < 0.05), whereas the Nox4 genotype had no effects on these genes. In conclusion, Nox4 expression from both mesenchymal and nonmesenchymal cell lineages appears to exert subtle effects on bone. However, chronic ethanol feeding reduces cortical bone mass and cortical gene expression of major structural bone proteins in a Nox4-independent manner. SIGNIFICANCE STATEMENT: Excessive alcohol intake contributes to osteopenia and osteoporosis, with oxidative stress caused by the activity of NADPH oxidases hypothesized to be a mediator. We tested the role of NADPH oxidase (Nox) 4 in osteoblast precursors in the long bones of mice with a conditional Nox4 knockout model. We found that Nox4 exerted effects independent of alcohol intake, and ethanol effects on bone were Nox4-independent.

Publication Source (Journal or Book title)

The Journal of pharmacology and experimental therapeutics

First Page

337

Last Page

346

This document is currently not available here.

Share

COinS