Authors

M. Meixner, Space Telescope Science Institute
F. Galliano, Astrophysique, Instrumentation et Modélisation de Paris-Saclay
S. Hony, Astrophysique, Instrumentation et Modélisation de Paris-Saclay
J. Roman-Duval, Space Telescope Science Institute
T. Robitaille, Harvard University
P. Panuzzo, Astrophysique, Instrumentation et Modélisation de Paris-Saclay
M. Sauvage, Astrophysique, Instrumentation et Modélisation de Paris-Saclay
K. Gordon, Space Telescope Science Institute
C. Engelbracht, The University of Arizona
K. Misselt, The University of Arizona
K. Okumura, Astrophysique, Instrumentation et Modélisation de Paris-Saclay
T. Beck, Space Telescope Science Institute
J. P. Bernard, CNRS Centre National de la Recherche Scientifique
A. Bolatto, University of Maryland, College Park
C. Bot, Observatoire Astronomique de Strasbourg
M. Boyer, Space Telescope Science Institute
S. Bracker, University of Wisconsin-Madison
L. R. Carlson, Johns Hopkins University
G. C. Clayton, Louisiana State University
C. H. R. Chen, National Radio Astronomy Observatory
E. Churchwell, University of Wisconsin-Madison
Y. Fukui, Nagoya University
M. Galametz, Astrophysique, Instrumentation et Modélisation de Paris-Saclay
J. L. Hora, Harvard University
A. Hughes, Swinburne University of Technology
R. Indebetouw, National Radio Astronomy Observatory
F. P. Israel, Leiden Observatory Research Institute
A. Kawamura, Nagoya University
F. Kemper, The University of Manchester
S. Kim, Sejong University
E. Kwon, Sejong University
B. Lawton, Space Telescope Science Institute
A. Li, University of Missouri

Document Type

Article

Publication Date

7-16-2010

Abstract

The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observatory's PACS and SPIRE photometry cameras, we imaged a 2° × 8° strip through the LMC, at a position angle of ∼22.5° as part of the science demonstration phase of the Herschel mission. We present the data in all 5 Herschel bands: PACS 100 and 160 μm and SPIRE 250, 350 and 500 μm. We present two dust models that both adequately fit the spectral energy distribution for the entire strip and both reveal that the SPIRE 500 μm emission is in excess of the models by ∼6 to 17%. The SPIRE emission follows the distribution of the dust mass, which is derived from the model. The PAH-to-dust mass (fPAH) image of the strip reveals a possible enhancement in the LMC bar in agreement with previous work. We compare the gas mass distribution derived from the HI 21 cm and CO J = 1-0 line emission maps to the dust mass map from the models and derive gas-to-dust mass ratios (GDRs). The dust model, which uses the standard graphite and silicate optical properties for Galactic dust, has a very low GDR = 65-18+15 making it an unrealistic dust model for the LMC. Our second dust model, which uses amorphous carbon instead of graphite, has a flatter emissivity index in the submillimeter and results in a GDR = 287-42+25 that is more consistent with a GDR inferred from extinction. © ESO, 2010.

Publication Source (Journal or Book title)

Astronomy and Astrophysics

Share

COinS