Document Type


Publication Date



Aims. The light curve of the microlensing event KMT-2021-BLG-0912 exhibits a very short anomaly relative to a single-lens single-source form. We investigate the light curve for the purpose of identifying the origin of the anomaly.

Methods. We model the light curve under various interpretations. From this, we find four solutions, in which three solutions are found under the assumption that the lens is composed of two masses (2L1S models), and the other solution is found under the assumption that the source is comprised of binary stars (1L2S model). The 1L2S model is ruled out based on the contradiction that the faint source companion is bigger than its primary, and one of the 2L1S solutions is excluded from the combination of the poorer fit, blending constraint, and lower overall probability, leaving two surviving solutions with the planet/host mass ratios of q similar to 2.8 x 10(-5) and similar to 1.1 x 10(-5). A subtle central deviation supports the possibility of a tertiary lens component, either a binary companion to the host with a very large or small separation, or a second planet lying near the Einstein ring, but it is difficult to claim a secure detection due to the marginal improvement of the fit, lack of consistency among different data sets, and difficulty in uniquely specifying the nature of the tertiary component.

Results. With the observables of the event, it is estimated that the masses of the planet and host are similar to(6.9 M-circle plus, 0.75 M-circle dot) according to one solution and similar to(2.8 M-circle plus, 0.80 M-circle dot) according to the other, indicating that the planet is a super Earth around a K-type star, regardless of the solution. The fact that 16 (including the one reported in this work) out of 19 microlensing planets with M less than or similar to 10 M-circle plus were detected during the last 6 yr nicely demonstrates the importance of high-cadence global surveys in detecting very low-mass planets.

Publication Source (Journal or Book title)



LSU contributor: Matthew Penny, Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA

See article for full list of authors and institutions.