Title

Polypyrrole metacomposites with different carbon nanostructures

Document Type

Article

Publication Date

3-21-2012

Abstract

Polypyrrole (PPy) nanocomposites incorporating different carbon nanostructures (CNS), including graphenes of different sizes, carbon nanofibers (CNFs) and carbon nanotubes (CNTs), have been successfully synthesized using a surface initiated polymerization (SIP) method. The effects of graphene size, loading level and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The electron transportation mechanism has been investigated, which follows a quasi 3-d variable range hopping (VRH) behavior in the nanocomposites. Meanwhile, CNFs and CNTs with the same loading as graphene are also comparatively studied. Scanning electron microscopy and transmission electron microscopy results indicate that the PPy coating on one-dimensional carbon nanostructures, such as CNFs and CNTs, is more smooth and uniform than that on the two-dimensional graphenes. PPy/CNTs nanocomposites exhibit the lowest resistivity, followed by the composites incorporating the smaller sized graphene without surfactant. More interestingly, a negative permittivity is found in each composite system, which can be easily controlled by adjusting the nanofiller loading, morphology and surface functionality. TGA results indicate that the thermal stability of the polymer nanocomposites (PNCs) is affected by the graphene loading rather than the different nanostructures. © 2012 The Royal Society of Chemistry.

Publication Source (Journal or Book title)

Journal of Materials Chemistry

First Page

4996

Last Page

5005

This document is currently not available here.

Share

COinS