Multi-messenger observations of a binary neutron star merger


B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
F. Acernese, Università degli Studi di Salerno
K. Ackley, University of Florida
C. Adams, LIGO Livingston
T. Adams, Université Savoie Mont Blanc
P. Addesso, Università degli Studi del Sannio
R. X. Adhikari, California Institute of Technology
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Afrough, University of Mississippi
B. Agarwal, University of Illinois Urbana-Champaign
M. Agathos, University of Cambridge
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEF
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
L. Aiello, Gran Sasso Science Institute
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
G. Allen, University of Illinois Urbana-Champaign
A. Allocca, Università di Pisa
P. A. Altin, The Australian National University
A. Amato, IN2P3 Institut National de Physique Nucleaire et de Physique des Particules
A. Ananyeva, California Institute of Technology
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
S. V. Angelova, University of the West of Scotland
S. Antier, Laboratoire de l'Accélérateur Linéaire
S. Appert, California Institute of Technology
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology

Document Type


Publication Date



On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40-+88 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M☉. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

Publication Source (Journal or Book title)

Astrophysical Journal Letters

This document is currently not available here.