Title

Giant magnetoresistance in non-magnetic phosphoric acid doped polyaniline silicon nanocomposites with higher magnetic field sensing sensitivity

Document Type

Article

Publication Date

7-14-2013

Abstract

Phosphoric acid doped conductive polyaniline (PANI) polymer nanocomposites (PNCs) reinforced with silicon nanopowders have been successfully synthesized using a facile surface initiated polymerization (SIP) method. The chemical structures of the nanocomposites are characterized using Fourier transform infrared (FT-IR) spectroscopy. The enhanced thermal stability of the silicon-PANI PNCs compared with pure PANI is obtained using thermogravimetric analysis (TGA). The obtained optical band gap of the PNCs using Ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) decreases with increasing silicon loading. The dielectric properties of the PNCs are strongly related to the silicon loading level. Temperature dependent resistivity analysis reveals a quasi 3-D variable range hopping (VRH) electrical conduction mechanism for the synthesized PNCs. Room temperature giant magnetoresistance (GMR) is observed in the synthesized non-magnetic nanocomposites and analyzed using the wave-function shrinkage model. © 2013 the Owner Societies.

Publication Source (Journal or Book title)

Physical Chemistry Chemical Physics

First Page

10866

Last Page

10875

This document is currently not available here.

Share

COinS