Title

Two-message quantum interactive proofs and the quantum separability problem

Document Type

Article

Publication Date

4-1-2014

Abstract

Suppose that a polynomial-time mixed-state quantum circuit, described as a sequence of local unitary interactions followed by a partial trace, generates a quantum state shared between two parties. One might then wonder, does this quantum circuit produce a state that is separable or entangled? Here, we give evidence that it is computationally hard to decide the answer to this question, even if one has access to the power of quantum computation. We begin by exhibiting a two-message quantum interactive proof system that can decide the answer to a promise version of the question. We then prove that the promise problem is hard for the class of promise problems with "quantum statisti- cal zero knowledge" (QSZK) proof systems by demonstrating a polynomial-time Karp reduction from the QSZK-complete promise problem "quantum state distinguishability" to our quantum separability problem. By exploiting Knill's effcient encoding of a ma- trix description of a state into a description of a circuit to generate the state, we can show that our promise problem is NP-hard with respect to Cook reductions. Thus, the quantum separability problem (as phrased above) constitutes the first nontrivial promise problem decidable by a two-message quantum interactive proof system while being hard for both NP and QSZK. We also consider a variant of the problem, in which a given polynomial-time mixed-state quantum circuit accepts a quantum state as input, and the question is to decide if there is an input to this circuit which makes its output separable across some bipartite cut. We prove that this problem is a complete promise problem for the class QIP of problems decidable by quantum interactive proof systems. Finally, we show that a two-message quantum interactive proof system can also decide a multipartite generalization of the quantum separability problem. © Rinton Press.

Publication Source (Journal or Book title)

Quantum Information and Computation

First Page

384

Last Page

416

This document is currently not available here.

Share

COinS