Document Type

Article

Publication Date

3-1-2020

Abstract

Magnetization, electrical resistivity, magnetoresistance, and Hall resistivity of Ni50Mn35In14.25B0.75 and Ni50Mn35In14.5B0.5 Heusler alloys were studied in a temperature range T=80-400K in magnetic fields up to 20 kOe. Both alloys exhibit a martensitic transformation from a higherature ferromagnetic austenite phase to a lowerature, low-magnetization martensitic phase. The electrical resistivity nearly doubles as a result of the martensitic transformation, reaching 180 and 100 μ cm in the martensitic states of Ni50Mn35In14.25B0.75 and Ni50Mn35In14.5B0.5, respectively. The temperature dependence of the electrical resistivity does not corresponded with the Mooij correlation. The magnetoresistance is negative with a narrow negative peak at the martensitic transition. Normal and anomalous Hall effect coefficients were determined by fitting the field dependences of the Hall resistivity using magnetization data. The coefficients of the normal Hall effect for both compositions were found to decrease with temperature from positive values in the austenite to negative values in the martensite phase. None of the known correlations between the anomalous Hall effect coefficient and resistivity were satisfied. Significant changes in the values of the anomalous Hall coefficients during the martensitic transformation are explained by the difference in spin-up and spin-down state occupations in the martensite and austenite phases. First-principles calculations of the electronic structures confirm this explanation.

Publication Source (Journal or Book title)

Physical Review B

Share

COinS