Document Type

Article

Publication Date

5-4-2010

Abstract

We present angle- and energy-resolved measurements of photoelectrons produced in strong-field ionization of Xe using a tunable femtosecond laser. An occurrence of highly oscillatory patterns in the angular distribution at low photoelectron kinetic energy is observed that correlates with channel closing/opening over a wide range of laser parameters. The correlation is investigated both experimentally and by means of systematic analysis of numerical solutions of the time-dependent Schrödinger equation. Our experimental and numerical results are in quantitative agreement with the semi-classical model introduced by Arbó et al (2008 Phys. Rev. A 78 013406), which relates the oscillatory patterns to interference between photoelectrons produced during different cycles of the laser pulse in the course of non-resonant ionization of the atom. We observe that an increase of the laser intensity eventually leads to qualitative invariance of the pattern, defining a limit on the applicability of the semi-classical model. © 2010 IOP Publishing Ltd.

Publication Source (Journal or Book title)

Journal of Physics B: Atomic, Molecular and Optical Physics

Share

COinS