Pluto's light curve in 1933-1934

Document Type

Article

Publication Date

10-1-2008

Abstract

The Pluto-Charon system has complex photometric variations on all time scales; due to rotational modulations of dark markings across the surface, the changing orientation of the system as viewed from Earth, occultations and eclipses between Pluto and Charon, as well as the sublimation and condensation of frosts on the surface. The earliest useable light curve for Pluto is from 1953 to 1955 when Pluto was 35 AU from the Sun. Earlier data on Pluto has the potential to reveal properties of the surface at a greater heliocentric distance with nearly identical illumination and viewing geometry. We are reporting on a new accurate photographic light curve of Pluto for 1933-1934 when the heliocentric distance was 40 AU. We used 43 B-band and V-band images of Pluto on 32 plates taken on 15 nights from 19 March 1933 to 10 March 1934. Most of these plates were taken with the Mount Wilson 60″ and 100″ telescopes, but 7 of the plates (now at the Harvard College Observatory) were taken with the 12″ and 16″ Metcalf doublets at Oak Ridge. The plates were measured with an iris diaphragm photometer, which has an average one-sigma photometric error on these plates of 0.08 mag as measured by the repeatability of constant comparison stars. The modern B and V magnitudes for the comparison stars were measured with the Lowell Observatory Hall 1.1-m telescope. The magnitudes in the plate's photographic system were converted to the Johnson B- and V-system after correction with color terms, even though they are small in size. We find that the average B-band mean opposition magnitude of Pluto in 1933-1934 was 15.73 ± 0.01, and we see a roughly sinusoidal modulation on the rotational period (6.38 days) with a peak-to-peak amplitude of 0.11 ± 0.03 mag. With this, we show that Pluto darkened by 5% from 1933-1934 to 1953-1955. This darkening from 1933-1934 to 1953-1955 cannot be due to changing viewing geometry (as both epochs had identical sub-Earth latitudes), so our observations must record a real albedo change over the southern hemisphere. The later darkening trend from 1954 to the 1980's has been explained by changing viewing geometry (as more of the darker northern hemisphere comes into view). Thus, we now have strong evidence for albedo changes on the surface of Pluto, and these are most easily explained by the systematic sublimation of frosts from the sunward pole that led to a drop in the mean surface albedo. © 2008 Elsevier Inc. All rights reserved.

Publication Source (Journal or Book title)

Icarus

First Page

590

Last Page

598

This document is currently not available here.

Share

COinS