Document Type

Article

Publication Date

2-1-2007

Abstract

Purpose: To determine the dosimetric impact of interfraction anatomic movements in prostate cancer patients receiving proton therapy. Methods and Materials: For each of the 10 patients studied, 8 computed tomography (CT) scans were selected from sets of daily setup CT images that were acquired from a cohort of prostate cancer patients. The images were acquired in the treatment room using the CT-on-rails system. First, standard proton therapy and intensity-modulated radiation therapy (IMRT) plans were designed for each patient using standard modality-specific methods. The images, the proton plan, and the IMRT plan were then aligned to the eight CT images based on skin marks. The doses were recalculated on these eight CT images using beam from the standard plans. Second, the plans were redesigned and evaluated assuming a smaller clinical target volume to planning target volume margin (3 mm). The images and the corresponding plans were then realigned based on the center of volume of the prostate. Dose distributions were evaluated using isodose displays, dose-volume histograms, and target coverage. Results: For the skin-marker alignment method, 4 of the 10 IMRT plans were deficient, whereas 3 of 10 proton plans were compromised. For the alignment method based on the center of volume of the prostate, only the proton plan for 1 patient was deficient, whereas 3 of the 10 IMRT plans were suboptimal. Conclusion: A comparison of passively scattered proton therapy and highly conformal IMRT plans for prostate cancer revealed that the dosimetric impact of interfractional anatomic motions was similar for both modalities. © 2007 Elsevier Inc. All rights reserved.

Publication Source (Journal or Book title)

International Journal of Radiation Oncology Biology Physics

First Page

620

Last Page

629

Share

COinS