Authors

A. Aab, Universität Siegen
P. Abreu, Instituto Superior Técnico
M. Aglietta, Università degli Studi di Torino
M. Ahlers, University of Wisconsin-Madison
E. J. Ahn, Fermi National Accelerator Laboratory
I. Al Samarai, Institut de Physique Nucléaire d’Orsay
I. F.M. Albuquerque, Universidade de São Paulo
I. Allekotte, Centro Atomico Bariloche
J. Allen, New York University
P. Allison, The Ohio State University
A. Almela, Universidad Tecnologica Nacional
J. Alvarez Castillo, Universidad Nacional Autónoma de México
J. Alvarez-Muñiz, Universidad de Santiago de Compostela
R. Alves Batista, Universität Hamburg
M. Ambrosio, Università degli Studi di Napoli Federico II
A. Aminaei, Radboud Universiteit
L. Anchordoqui, University of Wisconsin-Milwaukee
S. Andringa, Instituto Superior Técnico
C. Aramo, Università degli Studi di Napoli Federico II
F. Arqueros, Universidad Complutense de Madrid
H. Asorey, Centro Atomico Bariloche
P. Assis, Instituto Superior Técnico
J. Aublin, Laboratoire de Physique Nucléaire et de Hautes Energies
M. Ave, Universidad de Santiago de Compostela
M. Avenier, Universite Grenoble Alpes
G. Avila, Pierre Auger Observatory
A. M. Badescu, University Politehnica of Bucharest
K. B. Barber, The University of Adelaide
J. Bäuml, Karlsruher Institut für Technologie, Campus Süd
C. Baus, Karlsruher Institut für Technologie, Campus Süd
J. J. Beatty, The Ohio State University
K. H. Becker, Bergische Universität Wuppertal
J. A. Bellido, The University of Adelaide

Document Type

Article

Publication Date

7-25-2014

Abstract

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models. © 2014 American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

Share

COinS