Authors

A. Aab, Radboud Universiteit
P. Abreu, Instituto Superior Técnico
M. Aglietta, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
J. M. Albury, The University of Adelaide
I. Allekotte, Instituto Balseiro
A. Almela, Universidad Nacional de San Martín
J. Alvarez-Muñiz, Universidad de Santiago de Compostela
R. Alves Batista, Radboud Universiteit
G. A. Anastasi, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
L. Anchordoqui, Lehman College
B. Andrada, Universidad Nacional de San Martín
S. Andringa, Instituto Superior Técnico
C. Aramo, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
P. R. Araújo Ferreira, Rheinisch-Westfälische Technische Hochschule Aachen
H. Asorey, Universidad Nacional de San Martín
P. Assis, Instituto Superior Técnico
G. Avila, Pierre Auger Observatory
A. M. Badescu, University Politehnica of Bucharest
A. Bakalova, Institute of Physics of the Czech Academy of Sciences
A. Balaceanu, Horia Hulubei National Institute of Physics and Nuclear Engineering
F. Barbato, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
R. J. Barreira Luz, Instituto Superior Técnico
K. H. Becker, Bergische Universität Wuppertal
J. A. Bellido, The University of Adelaide
C. Berat, Universite Grenoble Alpes
M. E. Bertaina, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
X. Bertou, Instituto Balseiro
P. L. Biermann, Max Planck Institute for Radio Astronomy
T. Bister, Rheinisch-Westfälische Technische Hochschule Aachen
J. Biteau, Universite Paris-Saclay
J. Blazek, Institute of Physics of the Czech Academy of Sciences
C. Bleve, Universite Grenoble Alpes
M. Boháčová, Institute of Physics of the Czech Academy of Sciences

Document Type

Article

Publication Date

1-1-2021

Abstract

AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector.

Publication Source (Journal or Book title)

Journal of Instrumentation

Share

COinS