Decays of the Three Top Contributors to the Reactor ν - e High-Energy Spectrum, Rb 92, y 96gs, and Cs 142, Studied with Total Absorption Spectroscopy

Document Type


Publication Date



We report total absorption spectroscopy measurements of Rb92, Y96gs, and Cs142 β decays, which are the most important contributors to the high energy ν-e spectral shape in nuclear reactors. These three β decays contribute 43% of the ν-e flux near 5.5 MeV emitted by nuclear reactors. This ν-e energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of U238 with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of Rb92, with a ground-state to ground-state β feeding of 91(3)%. We verify the Y96gs ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of Cs142, reducing the β feeding to Ba142 states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν-e flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%.

Publication Source (Journal or Book title)

Physical Review Letters

This document is currently not available here.