Document Type

Article

Publication Date

1-1-2011

Abstract

The synthesis of isolated attosecond pulses (IAPs) in the extreme ultraviolet (XUV) spectral region has opened up the shortest time scales for timeresolved studies. It relies on the generation of high-order harmonics (HHG) from high-power few-cycle infrared (IR) laser pulses. Here we explore experimentally a new and simple route to IAP generation directly from 35 fs IR pulses that undergo filamentation in argon. Spectral broadening, self-shortening of the IR pulse and HHG are realized in a single stage, reducing the cost and experimental effort for easier spreading of attosecond sources. We observe continuous XUV spectra supporting IAPs, emerging directly from the filament via a truncating pinhole to vacuum. The extremely short absorption length of the XUV radiation makes it a highly local probe for studying the elusive filamentation dynamics and in particular provides an experimental diagnostic of short-lived spikes in laser intensity. The excellent agreement with numerical simulations suggests the formation of a single-cycle pulse in the filament. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Publication Source (Journal or Book title)

New Journal of Physics

Share

COinS