Title

Nonlinear modes of liquid drops as solitary waves

Document Type

Article

Publication Date

1-1-1998

Abstract

The nonlinear dynamic equations of the surface of a liquid drop are shown to be directly connected to Korteweg-de Vries (KdV) systems, giving traveling solutions that are cnoidal waves. They generate multiscale patterns ranging from small harmonic oscillations (linearized model), to nonlinear oscillations, up through solitary waves. These non-axis-symmetric localized shapes are also described by a KdV Hamiltonian system. Recently such “rotons” were observed experimentally when the shape oscillations of a droplet became nonlinear. The results apply to droplike systems from cluster formation to stellar models, including hyperdeformed nuclei and fission. © 1998 The American Physical Society.

Publication Source (Journal or Book title)

Physical Review Letters

First Page

2125

Last Page

2128

This document is currently not available here.

Share

COinS