Title

Analysis and classification of nonlinear dispersive evolution equations in the potential representation

Document Type

Article

Publication Date

7-26-2002

Abstract

A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class.

Publication Source (Journal or Book title)

Journal of Physics A: Mathematical and General

First Page

6075

Last Page

6090

This document is currently not available here.

Share

COinS