Underlying symmetries of realistic interactions and the nuclear many-body problem

Document Type


Publication Date



The present study brings forward important information, within the framework of spectral distribution theory, about the types of forces that dominate three realistic interactions, CD-Bonn, CD-Bonn+3terms, and GXPF1, in nuclei and their ability to account for many-particle effects such as the formation of correlated nucleon pairs and enhanced quadrupole collective modes. Like-particle and proton-neutron isovector pairing correlations are described microscopically by a model interaction with sp(4) dynamical symmetry, which is extended to include an additional quadrupole-quadrupole interaction. The analysis of the results for the 1f7/2 level shows that both CD-Bonn+3terms and GXPF1 exhibit a well-developed pairing character compared to CD-Bonn, while the latter appears to build up more (less) rotational isovector T=1 (isoscalar T=0) collective features. Furthermore, the three realistic interactions are in general found to correlate strongly with the pairing+quadrupole model interaction, especially for the highest possible isospin group of states where the model interaction can be used to provide a reasonable description of the corresponding energy spectra. © 2006 The American Physical Society.

Publication Source (Journal or Book title)

Physical Review C - Nuclear Physics

This document is currently not available here.