Title

Exact solution of the extended dimer Bose-Hubbard model with multi-body interactions

Document Type

Article

Publication Date

4-1-2020

Abstract

It is shown that the extended one-dimensional dimer Bose-Hubbard model with multi-body interactions can be solved exactly by using the algebraic Bethe ansatz mainly due to the site-permutation S 2 symmetry. The solution for the model with up to three-particle hopping and three-body on-site interaction is explicitly shown. As an example of the application, lower part of the excitation energy levels and the ground-state entanglement measure of the standard Bose-Hubbard Hamiltonian with the attractive two-body on-site interaction plus the three-body on-site interaction for 100 bosons with variation of the control parameter are calculated by using the exact solution. It is shown that the attractive three-body on-site interaction reinforces the critical point entanglement of the system, which may be helpful for design of an optical lattice for ultracold atoms or a tuneable superconducting quantum interference device with maximal entanglement.

Publication Source (Journal or Book title)

Journal of Statistical Mechanics: Theory and Experiment

This document is currently not available here.

Share

COinS