Improving the 33S(p,γ)34Cl reaction rate for models of classical nova explosions

A. Parikh, Fakultät für Physik, Technische Universität München
Th Faestermann, Fakultät für Physik, Technische Universität München
R. Krücken, Fakultät für Physik, Technische Universität München
V. Bildstein, Fakultät für Physik, Technische Universität München
S. Bishop, Fakultät für Physik, Technische Universität München
K. Eppinger, Fakultät für Physik, Technische Universität München
C. Herlitzius, Fakultät für Physik, Technische Universität München
O. Lepyoshkina, Fakultät für Physik, Technische Universität München
P. Maierbeck, Fakultät für Physik, Technische Universität München
D. Seiler, Fakultät für Physik, Technische Universität München
K. Wimmer, Fakultät für Physik, Technische Universität München
R. Hertenberger, Ludwig-Maximilians-Universität München
H. F. Wirth, Ludwig-Maximilians-Universität München
J. Fallis, TRIUMF
U. Hager, TRIUMF
D. Hutcheon, TRIUMF
Ch Ruiz, TRIUMF
L. Buchmann, TRIUMF
D. Ottewell, TRIUMF
B. Freeman, University of Washington
Ch Wrede, University of Washington
A. García, University of Washington
B. Delbridge, University of Washington
A. Knecht, University of Washington
A. Sallaska, University of Washington
A. A. Chen, Excellence Cluster ORIGINS
J. A. Clark, Argonne National Laboratory
C. M. Deibel, Argonne National Laboratory
B. Fulton, University of York
A. Laird, University of York
U. Greife, Colorado School of Mines
B. Guo, China Institute of Atomic Energy
E. Li, China Institute of Atomic Energy

Abstract

Reduced uncertainty in the thermonuclear rate of the 33S(p, γ)34Cl reaction would help to improve our understanding of nucleosynthesis in classical nova explosions. At present, models are generally in concordance with observations that nuclei up to roughly the calcium region may be produced in these explosive phenomena; better knowledge of this rate would help with the quantitative interpretation of nova observations over the S-Ca mass region, and contribute towards the firm establishment of a nucleosynthetic endpoint. As well, models find that the ejecta of nova explosions on massive oxygen-neon white dwarfs may contain as much as 150 times the solar abundance of 33S. This characteristic isotopic signature of a nova explosion could possibly be observed through the analysis of microscopic grains formed in the environment surrounding a nova and later embedded within primitive meteorites. An improved 33S(p,γ)34Cl rate (the principal destruction mechanism for 33S in novae) would help to ensure a robust model prediction for the amount of 33S that may be produced. Finally, constraining this rate could confirm or rule out the decay of an isomeric state of 34Cl (Ex=146keV, t 1/2=32m) as a source for observable gamma-rays from novae. We have performed several complementary experiments dedicated to improving our knowledge of the 33S(p,γ)34Cl rate, using both indirect methods (measurement of the 34S(3He,t)34Cl and 33S(3He,d)34Cl reactions with the Munich Q3D spectrograph) and direct methods (in normal kinematics at CENPA, University of Washington, and in inverse kinematics with the DRAGON recoil mass separator at TRIUMF). Our results will be used with nova models to facilitate comparisons of model predictions with present and future nova observables. © 2011 American Institute of Physics.