Toward laser ablation Accelerator Mass Spectrometry of actinides

R. C. Pardo, Argonne National Laboratory
F. G. Kondev, Argonne National Laboratory
S. Kondrashev, Argonne National Laboratory
C. Nair, Argonne National Laboratory
T. Palchan, Argonne National Laboratory
R. Scott, Argonne National Laboratory
D. Seweryniak, Argonne National Laboratory
R. Vondrasek, Argonne National Laboratory
M. Paul, Hebrew University of Jerusalem
P. Collon, University of Notre Dame
C. Deibel, Argonne National Laboratory
G. Youinou, Idaho National Laboratory
M. Salvatores, Idaho National Laboratory
G. Palmotti, Idaho National Laboratory
J. Berg, Idaho National Laboratory
J. Fonnesbeck, Idaho National Laboratory
G. Imel, Idaho State University

Abstract

A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed. © 2012 Elsevier B.V. All rights reserved.