Title

Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts

Authors

B. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
R. Adhikari, California Institute of Technology
A. Ageev, Lomonosov Moscow State University
J. Agresti, California Institute of Technology
P. Ajith, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. Allen, University of Wisconsin-Milwaukee
J. Allen, Massachusetts Institute of Technology
R. Amin, Louisiana State University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Texas at Brownsville and Texas Southmost College
M. Araya, California Institute of Technology
H. Armandula, California Institute of Technology
M. Ashley, Pennsylvania State University
F. Asiri, California Institute of Technology
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Cardiff University
R. Balasubramanian, Cardiff University
S. Ballmer, Massachusetts Institute of Technology
B. C. Barish, California Institute of Technology
C. Barker, LIGO Hanford
D. Barker, LIGO Hanford
M. Barnes, California Institute of Technology
B. Barr, University of Glasgow
M. A. Barton, California Institute of Technology
K. Bayer, Massachusetts Institute of Technology
R. Beausoleil, Stanford University
K. Belczynski, Northwestern University
R. Bennett, University of Glasgow
S. J. Berukoff, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
J. Betzwieser, Massachusetts Institute of Technology
B. Bhawal, California Institute of Technology

Document Type

Article

Publication Date

12-15-2005

Abstract

We report on the first joint search for gravitational waves by the TAMA and LIGO collaborations. We looked for millisecond-duration unmodeled gravitational-wave bursts in 473 hr of coincident data collected during early 2003. No candidate signals were found. We set an upper limit of 0.12 events per day on the rate of detectable gravitational-wave bursts, at 90% confidence level. From software simulations, we estimate that our detector network was sensitive to bursts with root-sum-square strain amplitude above approximately 1-3×10-19Hz-1/2 in the frequency band 700-2000 Hz. We describe the details of this collaborative search, with particular emphasis on its advantages and disadvantages compared to searches by LIGO and TAMA separately using the same data. Benefits include a lower background and longer observation time, at some cost in sensitivity and bandwidth. We also demonstrate techniques for performing coincidence searches with a heterogeneous network of detectors with different noise spectra and orientations. These techniques include using coordinated software signal injections to estimate the network sensitivity, and tuning the analysis to maximize the sensitivity and the livetime, subject to constraints on the background. © 2005 The American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

This document is currently not available here.

Share

COinS