Title

Observation of a kilogram-scale oscillator near its quantum ground state

Authors

B. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
R. Adhikari, California Institute of Technology
P. Ajith, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
G. Allen, Stanford University
R. Amin, Louisiana State University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
M. A. Arain, University of Florida
M. Araya, California Institute of Technology
H. Armandula, California Institute of Technology
P. Armor, University of Wisconsin-Milwaukee
Y. Aso, Columbia University
S. Aston, University of Birmingham
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. Ballmer, California Institute of Technology
H. Bantilan, Carleton College, USA
B. C. Barish, California Institute of Technology
C. Barker, LIGO Hanford
D. Barker, LIGO Hanford
B. Barr, University of Glasgow
P. Barriga, The University of Western Australia
M. A. Barton, University of Glasgow
M. Bastarrika, University of Glasgow
K. Bayer, Massachusetts Institute of Technology
J. Betzwieser, California Institute of Technology
P. T. Beyersdorf, San Jose State University
I. A. Bilenko, Lomonosov Moscow State University
G. Billingsley, California Institute of Technology
R. Biswas, University of Wisconsin-Milwaukee

Document Type

Article

Publication Date

7-16-2009

Abstract

We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system-an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10-18 m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Publication Source (Journal or Book title)

New Journal of Physics

This document is currently not available here.

Share

COinS