Title

Search for gravitational wave bursts from six magnetars

Authors

J. Abadie, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
M. Abernathy, University of Glasgow
T. Accadia, Université Savoie Mont Blanc
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
C. Adams, LIGO Livingston
R. Adhikari, California Institute of Technology
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
G. S. Allen, Stanford University
E. Amador Ceron, University of Wisconsin-Milwaukee
D. Amariutei, University of Florida
R. S. Amin, Louisiana State University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
F. Antonucci, Istituto Nazionale di Fisica Nucleare - INFN
K. Arai, California Institute of Technology
M. A. Arain, University of Florida
M. C. Araya, California Institute of Technology
S. M. Aston, University of Birmingham
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
D. Atkinson, LIGO Hanford
P. Aufmuth, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. E. Aylott, University of Birmingham
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. Baker, Montana State University
G. Ballardin, European Gravitational Observatory (EGO)
S. Ballmer, California Institute of Technology
D. Barker, LIGO Hanford
S. Barnum, Carleton College, USA
F. Barone, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli

Document Type

Article

Publication Date

6-20-2011

Abstract

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely 1kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >1044erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band- and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090Hz), are 3.0 × 1044 d 21erg and 1.4 × 10 47 d 21erg, respectively, where and d 0501 is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time. © 2011. The American Astronomical Society. All rights reserved.

Publication Source (Journal or Book title)

Astrophysical Journal Letters

This document is currently not available here.

Share

COinS