Title

Search for gravitational waves from intermediate mass binary black holes

Authors

J. Abadie, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, California State University, Fullerton
M. Abernathy, University of Glasgow
T. Accadia, Université Savoie Mont Blanc
F. Acernese, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
C. Adams, LIGO Livingston
R. Adhikari, California Institute of Technology
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEF
K. Agatsuma, National Institutes of Natural Sciences - National Astronomical Observatory of Japan
P. Ajith, California Institute of Technology
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
E. Amador Ceron, University of Wisconsin-Milwaukee
D. Amariutei, University of Florida
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
K. Arai, California Institute of Technology
M. A. Arain, University of Florida
M. C. Araya, California Institute of Technology
S. M. Aston, University of Birmingham
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
D. Atkinson, LIGO Hanford
P. Aufmuth, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. E. Aylott, University of Birmingham
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. Baker, Montana State University
G. Ballardin, European Gravitational Observatory (EGO)
S. Ballmer, Syracuse University
J. C.B. Barayoga, California Institute of Technology
D. Barker, LIGO Hanford

Document Type

Article

Publication Date

5-24-2012

Abstract

We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450M and with the component mass ratios between 11 and 41. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88M, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level. © 2012 American Physical Society.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology

This document is currently not available here.

Share

COinS