Authors

J. Aasi, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. Abbott, Louisiana State University
M. R. Abernathy, California Institute of Technology
F. Acernese, Università degli Studi di Salerno
K. Ackley, University of Florida
C. Adams, LIGO Livingston
T. Adams, Cardiff University
P. Addesso, Università degli Studi del Sannio
R. X. Adhikari, California Institute of Technology
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEF
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
P. Ajith, Tata Institute of Fundamental Research, Mumbai
A. Alemic, Syracuse University
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
A. Allocca, Università degli Studi di Siena
D. Amariutei, University of Florida
M. Andersen, Stanford University
R. A. Anderson, California Institute of Technology
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. Arceneaux, University of Mississippi
J. S. Areeda, California State University, Fullerton
S. Ast, Gottfried Wilhelm Leibniz Universität Hannover
S. M. Aston, LIGO Livingston
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
H. Augustus, University of Birmingham

Document Type

Article

Publication Date

6-30-2014

Abstract

We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10-2Mc2 at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors. © 2014 American Physical Society.

Publication Source (Journal or Book title)

Physical Review Letters

Share

COinS