Title

Advanced LIGO

Authors

J. Aasi, California Institute of Technology
B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. Abbott, Louisiana State University
M. R. Abernathy, California Institute of Technology
K. Ackley, University of Florida
C. Adams, LIGO Livingston
T. Adams, Cardiff University
P. Addesso, Università degli Studi del Sannio
R. X. Adhikari, California Institute of Technology
V. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
A. Alemic, Syracuse University
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
D. Amariutei, University of Florida
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. Arceneaux, University of Mississippi
J. S. Areeda, California State University, Fullerton
G. Ashton, University of Southampton
S. Ast, Gottfried Wilhelm Leibniz Universität Hannover
S. M. Aston, LIGO Livingston
P. Aufmuth, Gottfried Wilhelm Leibniz Universität Hannover
C. Aulbert, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
B. E. Aylott, University of Birmingham
S. Babak, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
P. T. Baker, Montana State University

Document Type

Article

Publication Date

4-9-2015

Abstract

The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

Publication Source (Journal or Book title)

Classical and Quantum Gravity

This document is currently not available here.

Share

COinS