Authors

B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
M. R. Abernathy, California Institute of Technology
F. Acernese, Università degli Studi di Salerno
K. Ackley, University of Florida
C. Adams, LIGO Livingston
T. Adams, Université Savoie Mont Blanc
P. Addesso, Università degli Studi del Sannio
R. X. Adhikari, California Institute of Technology
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEF
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEF
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
A. Allocca, Università di Pisa
D. V. Amariutei, University of Florida
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. C. Arceneaux, University of Mississippi
J. S. Areeda, California State University, Fullerton
N. Arnaud, Laboratoire de l'Accélérateur Linéaire
K. G. Arun, Chennai Mathematical Institute
G. Ashton, University of Southampton
M. Ast, Universität Hamburg
S. M. Aston, LIGO Livingston
P. Astone, Istituto Nazionale di Fisica Nucleare - INFN

Document Type

Article

Publication Date

2-12-2016

Abstract

We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.

Publication Source (Journal or Book title)

Physical Review D

Share

COinS