Title

ASTROPHYSICAL IMPLICATIONS of the BINARY BLACK HOLE MERGER GW150914

Authors

B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
M. R. Abernathy, California Institute of Technology
F. Acernese, Università degli Studi di Salerno
K. Ackley, University of Florida
C. Adams, LIGO Livingston
T. Adams, Université Savoie Mont Blanc
P. Addesso, Università degli Studi di Salerno
R. X. Adhikari, California Institute of Technology
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEF
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEF
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
L. Aiello, Istituto Nazionale di Fisica Nucleare - INFN
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
A. Allocca, Università di Pisa
P. A. Altin, The Australian National University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. C. Arceneaux, University of Mississippi
J. S. Areeda, California State University, Fullerton
N. Arnaud, Laboratoire de l'Accélérateur Linéaire
K. G. Arun, Chennai Mathematical Institute
S. Ascenzi, Istituto Nazionale di Fisica Nucleare - INFN
G. Ashton, University of Southampton
M. Ast, Universität Hamburg

Document Type

Article

Publication Date

2-20-2016

Abstract

The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" BHs (≳25 M⊙) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳1 Gpc-3yr?1) from both types of formation models. The low measured redshift (z ≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

Publication Source (Journal or Book title)

Astrophysical Journal Letters

This document is currently not available here.

Share

COinS