Title

The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914

Authors

B. P. Abbott, California Institute of Technology
R. Abbott, California Institute of Technology
T. D. Abbott, Louisiana State University
M. R. Abernathy, California Institute of Technology
F. Acernese, Università degli Studi di Salerno
K. Ackley, University of Florida
C. Adams, LIGO Livingston
T. Adams, Université Savoie Mont Blanc
P. Addesso, Università degli Studi di Salerno
R. X. Adhikari, California Institute of Technology
V. B. Adya, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
C. Affeldt, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
M. Agathos, FOM-Institute of Subatomic Physics - NIKHEF
K. Agatsuma, FOM-Institute of Subatomic Physics - NIKHEF
N. Aggarwal, LIGO, Massachusetts Institute of Technology
O. D. Aguiar, Instituto Nacional de Pesquisas Espaciais
L. Aiello, Istituto Nazionale di Fisica Nucleare - INFN
A. Ain, Inter-University Centre for Astronomy and Astrophysics India
P. Ajith, Tata Institute of Fundamental Research, Mumbai
B. Allen, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
A. Allocca, Università di Pisa
P. A. Altin, The Australian National University
S. B. Anderson, California Institute of Technology
W. G. Anderson, University of Wisconsin-Milwaukee
K. Arai, California Institute of Technology
M. C. Araya, California Institute of Technology
C. C. Arceneaux, University of Mississippi
J. S. Areeda, California State University, Fullerton
N. Arnaud, Laboratoire de l'Accélérateur Linéaire
K. G. Arun, Chennai Mathematical Institute
S. Ascenzi, Istituto Nazionale di Fisica Nucleare - INFN
G. Ashton, University of Southampton
M. Ast, Universität Hamburg

Document Type

Article

Publication Date

12-10-2016

Abstract

A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 days around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate (FAR) of <4.9 × 10-6 yr-1, yielding a p-value for GW150914 of <2 × 10-7. Parameter estimation follow-up on this trigger identifies its source as a binary black hole (BBH) merger with component masses (m1, m2 ) = ( 36-4+5, 29-4+4 ) M⊙ at redshift = z = 0.09-0.04+0.03 (median and 90% credible range). Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between 2-53 Gpc-3 yr-1 (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from 13-600 Gpc-3yr-1 depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range 2-600 Gpc-3 yr1.

Publication Source (Journal or Book title)

Astrophysical Journal Letters

This document is currently not available here.

Share

COinS