The Tensile Root Strength Of Spartina Patens: Response To Atrazine Exposure And Nutrient Addition

Lauris O. Hollis, Louisiana State University and Agricultural and Mechanical College
R. Eugene Turner


Coastal wetlands are receiving basins for inland runoff that contains numerous compounds such as nutrients and herbicides, which may have negative effects on wetland plants. Spartina patens is a dominant emergent macrophyte in low salinity wetlands whose biomechanical properties contribute to wetland stability against erosive forces and herbivore grazing. We conducted two greenhouse experiments with six levels of nutrients and three levels of atrazine doses to test the hypothesis that exposure to nutrients and atrazine changes the tensile root strength of S. patens. The results revealed that the tensile root strength of S. patens was not affected by either atrazine exposure or nutrient addition after 60 days, whereas the plants treated with atrazine, nutrient addition, or an atrazine-nutrient combination had significantly less tensile root strength than the Control after 212 days. There were no significant differences in tensile root strength between the main effects and treatment combinations, and hence, no interactive effects of nutrient addition and atrazine exposure. These results suggest that the influx of poor quality water into coastal wetlands will decrease the tensile root strength of S. patens and make coastal wetlands even more vulnerable to sea level rise and climate change.