Title

On Atkin and Swinnerton-Dyer congruence relations (3)

Document Type

Article

Publication Date

8-1-2008

Abstract

It is now well known that Hecke operators defined classically act trivially on genuine cuspforms for noncongruence subgroups of SL2 (Z). Atkin and Swinnerton-Dyer speculated the existence of p-adic Hecke operators so that the Fourier coefficients of their eigenfunctions satisfy three-term congruence recursions. In the previous two papers with the same title ([W.C. Li, L. Long, Z. Yang, On Atkin and Swinnerton-Dyer congruence relations, J. Number Theory 113 (1) (2005) 117-148] by W.C. Li, L. Long, Z. Yang and [A.O.L. Atkin, W.C. Li, L. Long, On Atkin and Swinnerton-Dyer congruence relations (2), Math. Ann. 340 (2) (2008) 335-358] by A.O.L. Atkin, W.C. Li, L. Long), the authors have studied two exceptional spaces of noncongruence cuspforms where almost all p-adic Hecke operators can be diagonalized simultaneously or semi-simultaneously. Moreover, it is shown that the l-adic Scholl representations attached to these spaces are modular in the sense that they are isomorphic, up to semisimplification, to the l-adic representations arising from classical automorphic forms. In this paper, we study an infinite family of spaces of noncongruence cuspforms (which includes the cases in [W.C. Li, L. Long, Z. Yang, On Atkin and Swinnerton-Dyer congruence relations, J. Number Theory 113 (1) (2005) 117-148; A.O.L. Atkin, W.C. Li, L. Long, On Atkin and Swinnerton-Dyer congruence relations (2), Math. Ann. 340 (2) (2008) 335-358]) under a general setting. It is shown that for each space in this family there exists a fixed basis so that the Fourier coefficients of each basis element satisfy certain weaker three-term congruence recursions. For a new case in this family, we will exhibit that the attached l-adic Scholl representations are modular and the p-adic Hecke operators can be diagonalized semi-simultaneously. © 2008 Elsevier Inc. All rights reserved.

Publication Source (Journal or Book title)

Journal of Number Theory

First Page

2413

Last Page

2429

This document is currently not available here.

Share

COinS