On the Asymptotic Derivation of Winkler-Type Energies from 3D Elasticity

Document Type


Publication Date



We show how bilateral, linear, elastic foundations (i.e., Winkler foundations) often regarded as heuristic, phenomenological models, emerge asymptotically from standard, linear, three-dimensional elasticity. We study the parametric asymptotics of a non-homogeneous linearly elastic bi-layer attached to a rigid substrate as its thickness vanishes, for varying thickness and stiffness ratios. By using rigorous arguments based on energy estimates, we provide a first rational and constructive justification of reduced foundation models. We establish the variational weak convergence of the three-dimensional elasticity problem to a two-dimensional one, of either a “membrane over in-plane elastic foundation”, or a “plate over transverse elastic foundation”. These two regimes are function of the only two parameters of the system, and a phase diagram synthesizes their domains of validity. Moreover, we derive explicit formulæ relating the effective coefficients of the elastic foundation to the elastic and geometric parameters of the original three-dimensional system.

Publication Source (Journal or Book title)

Journal of Elasticity

First Page


Last Page


This document is currently not available here.