Date of Award
1992
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Chemistry
First Advisor
Andrew W. Maverick
Abstract
The solution photophysics and photoredox reactions of several Mo$\sp{\rm III}$ and Mo$\sp{\rm V}$ complexes have been studied. Acetonitrile solutions of (Me$\sb3$ (9) aneN$\sb3$)MoX$\sb3$ (X = Cl, Br, I; Me$\sb3$ (9) aneN$\sb3$ = 1,4,7-trimethyl-1,4,7-triazacyclononane) are phosphorescent at room temperature, with the following emission maxima, lifetimes, and quantum yields: X = Cl, 1120 nm, 1.0 $\mu$s, and 6.1 $\times$ 10$\sp{-5}$; X = Br, 1130 nm, 800 ns, and 9.6 $\times$ 10$\sp{-5}$; X = I, 1160 nm, 400 ns, and 1.2 $\times$ 10$\sp{-4}$. HB(Me$\sb2$pz)$\sb3$MoCl$\sb3$ (Me$\sb2$pz = 3,5-dimethylpyrazole), (Me$\sb3$ (9) aneN$\sb3$)WCl$\sb3$ and mer-MoCl$\sb3$(pyridine)$\sb3$ phosphoresce more weakly. All three molybdenum-Me$\sb3$ (9) aneN$\sb3$ complexes undergo reversible one-electron photooxidation in the presence of acceptors such as tetracyanoethylene (TCNE) and 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil). (Me$\sb3$ (9) aneN$\sb3$)MoX$\sb3$ (X = Br, I) is photooxidized irreversibly to ((Me$\sb3$ (9) aneN$\sb3$)Mo$\sp{\rm IV}$X$\sb3$) $\sp+$ by C(NO$\sb2)\sb4$ in CH$\sb3$CN. In CH$\sb3$CN-H$\sb2$O (1:1 v/v), photoinitiated two-electron oxidation occurs: Mo$\sp{\rm IV}$ is also the initial product, but it disproportionates to form ((Me$\sb3$ (9) aneN$\sb3$)Mo$\sp{\rm V}$OX$\sb2$) $\sp+$. Acetonitrile solutions of Mo$\sp{\rm V}$OCl$\sb4$(CH$\sb3$CN)$\sp-$ and Mo$\sp{\rm V}$OBr$\sb4$(CH$\sb3$CN)$\sp-$, and CH$\sb2$Cl$\sb2$ solutions of Mo$\sp{\rm V}$OCl$\sb4$(H$\sb2$O)$\sp-$ and Mo$\sp{\rm V}$OBr$\sb4$(H$\sb2$O)$\sp-$, fluoresce at room temperature with maxima in the 900-950 nm range and the following excited-state lifetimes (and quantum yields): 100 ns (4 $\times$ 10$\sp{-4}$); 40 ns (1 $\times$ 10$\sp{-4}$); 60 ns (9 $\times$ 10$\sp{-5}$); and 30 ns (3 $\times$ 10$\sp{-5}$) respectively. ((Me$\sb3$ (9) aneN3)Mo$\sp{\rm V}$OBr2) $\sp+$, ((Me$\sb3$ (9) aneN$\sb3$)Mo$\sp{\rm V}$OI$\sb2$) $\sp+$, HB(Me$\sb2$pz)$\sb3$Mo$\sp{\rm V}$Cl$\sb2$ and ((Me$\sb3$ (9) aneN$\sb3$)W$\sp{\rm V}$OCl$\sb2$) $\sp+$ fluoresce more weakly in solution at room temperature. Mo$\sp{\rm V}$OCl$\sb4$(CH$\sb3$CN)$\sp-$ and Mo$\sp{\rm V}$OBr$\sb4$(CH$\sb3$CN)$\sp-$ are reversibly photooxidized in CH$\sb3$CN solution by TCNE and chloranil. The crystal structure of (BV) (MoOBr$\sb4$(H$\sb2$O)) Br$\cdot$CH$\sb3$CN has been determined by single crystal X-ray crystallography. Crystals of (BV) (MoOBr$\sb4$(H$\sb2$O)) Br$\cdot$CH$\sb3$CN are triclinic, space group P l. The compound luminesces in the solid state at room temperature. The luminescence of MoOBr$\sb4$(H$\sb2$O)$\sp-$ is not significantly quenched by the BV$\sp{2+}$ electron acceptors in the solid state, in spite of the thermodynamic favorability of the quenching process.
Recommended Citation
Mohammed, Abdul Kabir, "Photophysics and Photoredox Reactions of Molybdenum(III) and Molybdenum(V) Complexes." (1992). LSU Historical Dissertations and Theses. 5340.
https://digitalcommons.lsu.edu/gradschool_disstheses/5340
Pages
106
DOI
10.31390/gradschool_disstheses.5340