Degree
Doctor of Philosophy (PhD)
Department
Gordon A. and Mary Cain Department of Chemical Engineering
Document Type
Dissertation
Abstract
The discovery of new materials like catalysts, polymeric films, and biomolecules, is driven by industrial needs such as improving reaction or separation selectivity, enhancing therapeutic effects on medical treatments, or reducing costs of replacement. However, deployment of these advances in industrial applications is often hindered by the lack of models needed for design and optimization. Due to the novelty of materials and devices, experimental data and first principles' knowledge are scarce, making it hard to build models either via data-driven or knowledge based approaches. In this context, a way to efficiently combine domain knowledge with data could provide a pathway to streamline the deployment of new discoveries in industrial settings. The notion of hybrid modeling provides a useful platform to address these issues. Transfer Learning (TL) is an extension of Machine Learning (ML) in which knowledge learned for a particular task can be leveraged to ease the training for a new task. In terms of modeling for electrochemical systems, models developed for a given device or material can be used to reduce the amount of data needed to develop models for new materials, devices, or configurations. When the data for the initial training stage comes from a simulation, domain knowledge can be easily incorporated into the data-driven model, while at the same time reducing the number of experiments to be conducted. This approach can be used to generate surrogate models that approximate the real behavior of the systems with adequate accuracy at a reasonable cost. This dissertation introduces a methodology for the incorporation of Machine Learning-based surrogate models and TL into hybrid modeling with applications in electrochemical processes.
Date
2-24-2023
Recommended Citation
Briceno-Mena, Luis Alejandro, "Hybrid Modeling for Electrochemical Systems" (2023). LSU Doctoral Dissertations. 6053.
https://digitalcommons.lsu.edu/gradschool_dissertations/6053
Committee Chair
Romagnoli, Jose A.
DOI
10.31390/gradschool_dissertations.6053
Included in
Artificial Intelligence and Robotics Commons, Data Science Commons, Polymer and Organic Materials Commons, Process Control and Systems Commons