Degree

Doctor of Philosophy (PhD)

Department

Computer Science and Engineering

Document Type

Dissertation

Abstract

Learning to interpret fluid-type phenomena via images is a long-standing challenging problem in computer vision. The problem becomes even more challenging when the fluid medium is highly dynamic and refractive due to its transparent nature. Here, we consider imaging through such refractive fluid media like water and air. For water, we design novel supervised learning-based algorithms to recover its 3D surface as well as the highly distorted underground patterns. For air, we design a state-of-the-art unsupervised learning algorithm to predict the distortion-free image given a short sequence of turbulent images. Specifically, we design a deep neural network that estimates the depth and normal maps of a fluid surface by analyzing the refractive distortion of a reference background pattern. Regarding the recovery of severely downgraded underwater images due to the refractive distortions caused by water surface fluctuations, we present the distortion-guided network (DG-Net) for restoring distortion-free underwater images. The key idea is to use a distortion map to guide network training. The distortion map models the pixel displacement caused by water refraction. Furthermore, we present a novel unsupervised network to recover the latent distortion-free image. The key idea is to model non-rigid distortions as deformable grids. Our network consists of a grid deformer that estimates the distortion field and an image generator that outputs the distortion-free image. By leveraging the positional encoding operator, we can simplify the network structure while maintaining fine spatial details in the recovered images. We also develop a combinational deep neural network that can simultaneously perform recovery of the latent distortion-free image as well as 3D reconstruction of the transparent and dynamic fluid surface. Through extensive experiments on simulated and real captured fluid images, we demonstrate that our proposed deep neural networks outperform the current state-of-the-art on solving specific tasks.

Date

8-18-2021

Committee Chair

Ye, Jinwei

Share

COinS