Degree

Doctor of Philosophy (PhD)

Department

Mathematics

Document Type

Dissertation

Abstract

This dissertation studies quantum algebras at roots of unity in regards to cluster structure and Poisson structure. Moreover, quantum cluster algebras at roots of unity are rigorously defined. The discriminants of these algebras are described, in terms of frozen cluster variables for quantum cluster algebras and Poisson primes for specializations of quantum algebras. The discriminant is a useful invariant for representation theoretic and algebraic study, whose laborious computation deters direct evaluation. The discriminants of quantum Schubert cells at roots of unity will be computed from the two distinct approaches. These methods can be applied to many other quantum algebras.

Date

6-26-2019

Committee Chair

Yakimov, Milen

Available for download on Sunday, June 21, 2020

Included in

Algebra Commons

Share

COinS