Degree

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering

Document Type

Dissertation

Abstract

We study the identification problem for errors-in-variables (EIV) systems. Such an EIV model assumes that the measurement data at both input and output of the system involve corrupting noises. The least square (LS) algorithm has been widely used in this area. However, it results in biased estimates for the EIV-based system identification. In contrast, the total least squares (TLS) algorithm is unbiased, which is now well-known, and has been effective for estimating the system parameters in the EIV system identification.

In this dissertation, we first show that the TLS algorithm computes the approximate maximum likelihood estimate (MLE) of the system parameters and that the approximation error converges to zero asymptotically as the number of measurement data approaches infinity. Then we propose a graph subspace approach (GSA) to tackle the same EIV-based system identification problem and derive a new estimation algorithm that is more general than the TLS algorithm. Several numerical examples are worked out to illustrate our proposed estimation algorithm for the EIV-based system identification.

We also study the problem of the EIV system identification without assuming equal noise variances at the system input and output. Firstly, we review the Frisch scheme, which is a well-known method for estimating the noise variances. Then we propose a new method which is GSA in combination with the Frisch scheme (GSA-Frisch) algorithm via estimating the ratio of the noise variances and the system parameters iteratively. Finally, a new identification algorithm is proposed to estimate the system parameters based on the subspace interpretation without estimating noise variances or the ratio. This new algorithm is unbiased, and achieves the consistency of the parameter estimates. Moreover, it is low in complexity. The performance of the identification algorithm is examined by several numerical examples, and compared to the N4SID algorithm that has the Matlab codes available in Matlab toolboxes, and also to the GSA-Frisch algorithm.

Committee Chair

Gu, Guoxiang

Available for download on Thursday, May 28, 2020

Share

COinS