Doctor of Philosophy (PhD)


Engineering Science (Interdepartmental Program)

Document Type



This dissertation is divided into two parts. The first part includes chapter 2 to 4, which focus on development and application of numerical algorithm on particle and fluid simulation. Starting with a pure granular system in a driven cavity setup (Chapter 2), we move on to the immersed boundary simulation of fluid solid interaction (Chapter 3). This part ends with a coupled immersed boundary-discrete particle implementation. The second part includes Chapter 5 and Appendix A, each deals with an independent problem and focuses more on the theoretical aspects. Chapter 5 deals with a classic fluid dynamics problem of thermal wave induced net flux. Appendix A studies the underestimation of solver accuracy when the solution has singularities, and analyzes the cause of the underestimation using a simple theoretical model.



Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Krishnaswamy Nandakumar

Available for download on Saturday, February 23, 2019