Degree

Doctor of Philosophy (PhD)

Department

Mechanical and Industrial Engineering

Document Type

Dissertation/Thesis

Abstract

Neuromuscular electrical stimulation (NMES) is a technology where skeletal muscles are externally stimulated by electrodes to help restore functionality to human limbs with motor neuron disorder. This dissertation is concerned with the model-based feedback control of the NMES quadriceps muscle group-knee joint dynamics. A class of nonlinear controllers is presented based on various levels of model structures and uncertainties. The two main control techniques used throughout this work are backstepping control and Lyapunov stability theory.

In the first control strategy, we design a model-based nonlinear control law for the system with the exactly known passive mechanical that ensures asymptotical tracking. This first design is used as a stepping stone for the other control strategies in which we consider that uncertainties exist. In the next four control strategies, techniques for adaptive control of nonlinearly parameterized systems are applied to handle the unknown physical constant parameters that appear nonlinearly in the model. By exploiting the Lipschitzian nature or the concavity/convexity of the nonlinearly parameterized functions in the model, we design two adaptive controllers and two robust adaptive controllers that ensure practical tracking.

The next set of controllers are based on a NMES model that includes the uncertain muscle contractile mechanics. In this case, neural network-based controllers are designed to deal with this uncertainty. We consider here voltage inputs without and with saturation. For the latter, the Nussbaum gain is applied to handle the input saturation.

The last two control strategies are based on a more refined NMES model that accounts for the muscle activation dynamics. The main challenge here is that the activation state is unmeasurable. In the first design, we design a model-based observer that directly estimates the unmeasured state for a certain activation model. The second design introduces a nonlinear filter with an adaptive control law to handle parametric uncertainty in the activation dynamics. Both the observer- and filter-based, partial-state feedback controllers ensure asymptotical tracking.

Throughout this dissertation, the performance of the proposed control schemes are illustrated via computer simulations.

Date

11-15-2017

Committee Chair

de Queiroz, Marcio

Available for download on Saturday, November 03, 2018

Share

COinS