Degree

Doctor of Philosophy (PhD)

Department

Electrical Engineering

Document Type

Dissertation/Thesis

Abstract

Lung cancer is the leading cancer type that causes the mortality in both men and women. Computer aided detection (CAD) and diagnosis systems can play a very important role for helping the physicians in cancer treatments. This dissertation proposes a CAD framework that utilizes a hierarchical fusion based deep learning model for detection of nodules from the stacks of 2D images. In the proposed hierarchical approach, a decision is made at each level individually employing the decisions from the previous level. Further, individual decisions are computed for several perspectives of a volume of interest (VOI). This study explores three different approaches to obtain decisions in a hierarchical fashion. The first model utilizes the raw images. The second model uses a single type feature images having salient content. The last model employs multi-type feature images. All models learn the parameters by means of supervised learning. In addition, this dissertation proposes a new Trilateral Filter to extract salient content of 2D images. This new filter includes a second anisotropic Laplacian kernel in addition to the Bilateral filter’s range kernel. The proposed CAD frameworks are tested using lung CT scans from the LIDC/IDRI database. The experimental results showed that the proposed multi-perspective hierarchical fusion approach significantly improves the performance of the classification.

Date

10-17-2017

Committee Chair

Soysal, Omer M

Available for download on Monday, October 15, 2018

Share

COinS