Identifier
etd-07082013-020113
Degree
Doctor of Philosophy (PhD)
Department
Mechanical Engineering
Document Type
Dissertation
Abstract
This dissertation focuses on improving the functionality of metal-based microchannel heat exchangers (MHEs), as well as pushing this technology toward real-world applications. Design optimization was carried out on MHEs for performance maximization. Double-layered microchannel layout was experimentally studied, and a significant reduction on liquid flow pressure drop penalty was achieved. Other than water, another commonly-used coolant, ethylene glycol, was applied to MHEs, and flow and heat transfer characteristics were quantified. Transient Liquid Phase (TLP) bonding was used for joining Cu structures. For further understanding of the MHE heat transfer, a detailed examination was carried out on the TLP bonding interface region. In real applications, an MHE is likely to work with a heat rejection device. Therefore, further study was done on MHEs in the context of a close-loop recirculating-liquid cooling system. An alternative roll molding method suitable for continuous fabrication of metal-based microchannel arrays was studied. This technology may serve as an enabler for large-scale manufacturing of metal-based microchannel devices in an economical fashion.
Date
2013
Document Availability at the Time of Submission
Release the entire work immediately for access worldwide.
Recommended Citation
Lu, Bin, "Metal-based microchannel heat exchangers : manufacturing and heat transfer testing" (2013). LSU Doctoral Dissertations. 1879.
https://digitalcommons.lsu.edu/gradschool_dissertations/1879
Committee Chair
Meng, Wen Jin
DOI
10.31390/gradschool_dissertations.1879