Title

Gulf of Mexico sediment sources and sediment transport trends from magnetic susceptibility measurements of surface samples

Document Type

Article

Publication Date

8-24-2006

Abstract

The magnetic properties from 200 trigger core-top and Van Veen grab sediment samples recovered from throughout the Gulf of Mexico have been analyzed and used to characterize sediment source and flow pattern distributions. Magnetic parameters included are anhysteretic remanent magnetism (ARM) and magnetic susceptibility (MS) measurements. Results from these measurements are compared to previously determined calcium carbonate percentages, and clay and hematite influx trajectories into the Gulf of Mexico for the same samples reported by Balsam and Beeson [Balsam, W.L. and Beeson, J.P., 2003. Sea-floor sediment distribution in the Gulf of Mexico, Deep-Sea Res. I, 50, 1421-1444.]. The ARM results give an estimate of magnetic grain size distributions, and by analogy, grain size distributions in general, whereas MS patterns show high detrital sediment accumulation zones within the Gulf. The dominant influx of modern high susceptibility sediment into the Gulf of Mexico appears to originate from the Red River, flow into Atchafalaya River Basin and out into the Gulf from Atchafalaya Bay, with significant additional contributions from the Mississippi River through the Southwest Pass of the Mississippi River Delta. This material then moves across the continental shelf and down through the Mississippi Canyon into the deep Gulf where it is redistributed at depths > 3600 m. The eastern shelf margins in the Gulf, offshore from Alabama and Florida, are accumulating calcite- or quartz-rich medium to fine-grained sediment that has a very low or diamagnetic MS signature. From the Louisiana to Texas Gulf coast margins, MS is moderate to high, suggesting a river influx of magnetic constituents from the volcanic fields in New Mexico, and from igneous and metamorphic sources in the Mississippi Basin. Offshore from western Mexico, the MS is high to moderate, but the Yucatan Shelf margin is characterized by low to diamagnetic MS values due to sediment dominated by calcite sands and oozes, a trend that continues to the east onto the West Florida Shelf. Additional measurements of samples collected in association with sites characterized by hydrocarbon seepage exhibit anomalously low MS values. The samples from the lower shelf and slope areas are typified by iron reduction by bacterial organisms in these samples. These results produce anomalous localized lows in the MS trends observed. © 2006 Elsevier B.V. All rights reserved.

Publication Source (Journal or Book title)

Marine Geology

First Page

237

Last Page

248

This document is currently not available here.

Share

COinS