Lithium in staurolite and its petrologic significance

Document Type


Publication Date



Natural metapelitic staurolites contain appreciable amounts of lithium. Lithium contents were determined by ion microprobe with concentrations of representative samples independently analyzed by atomic absorption spectrophotometry for calibration. Seventy-one percent of the analyzed staurolites contain >0.1 wt.% Li2O, although the distribution is skewed to values less than 0.3 wt.%. High Li contents observed in staurolite are attributed to one or more of several factors: initiation of staurolite breakdown, lack of additional host phases for lithium (e.g. biotite), pre-metamorphic Li-rich bulk rock composition, and/or interaction of the rock with Li-rich fluids. Li content is generally not correlated with the modal amount of staurolite in the rock, rather Li values tend to reflect variable host rock Li. Lithium most likely resides in the R2+ tetrahedral site. Its incorporation into the structure is probably related to a coupled substitution with Al: ivLi viA1/3ivR-12+vi□-1/3 When staurolite analyses yield low R2+ and high Al values, the possibility of high Li should be considered after accounting for variable H. Lithium partitions into common pelitic metamorphic minerals in the order staurolite>cordierite>biotite>muscovite> garnet, tourmaline, and chloritoid. Partitioning is non-ideal in staurolite and a function of Fe content. Li in staurolite expands its stability field to a higher T relative to garnet and sillimanite, and to a lower T relative to chloritoid and Al-silicate. Analysis of staurolites for Li may provide further insight into this enigmatic mineral. © 1986 Springer-Verlag.

Publication Source (Journal or Book title)

Contributions to Mineralogy and Petrology

First Page


Last Page


This document is currently not available here.