Title

The relationship of conodont biofacies to spatially variable water mass properties in the Late Pennsylvanian Midcontinent Sea

Document Type

Article

Publication Date

8-21-2015

Abstract

©2015. American Geophysical Union. All Rights Reserved. Molybdenum and uranium enrichment factors and nitrogen isotopes suggest that an interplay of open ocean upwelling and riverine runoff led to distinct spatial and secular variations in water mass properties within the epicontinental Late Pennsylvanian Midcontinent Sea of North America. In particular, the intensity of continental runoff influenced the flux of bulk organic matter to the sediment. Benthic anoxia appears to have been controlled by the vertical density gradient in the water column associated with continental runoff combined with the advection of basinal water. Anoxic conditions were stronger in proximal (i.e., more shoreward) areas of the Midcontinent Shelf, indicating that anoxia did not develop primarily due to upwelling of nutrient-rich waters along the southern shelf margin, as previously suggested. Changes in water mass redox conditions not only drove authigenic enrichment of redox-sensitive trace elements across the basin but also had a strong effect on the spatial distribution of various conodont taxa. Our analysis suggests that the widely accepted depth-stratification model for the distribution of conodonts is incomplete. Conodont biofacies distributions seem to have been controlled by physicochemical properties of the water mass (e.g., salinity, temperature, nutrients, turbidity, and/or dissolved oxygen levels) that may correspond less directly to water depth. The proximity to terrestrial freshwater influx and the strength of anoxia/euxinia in the subpycnoclinal water mass played significant roles in the spatial and temporal distributions of conodont taxa.

Publication Source (Journal or Book title)

Paleoceanography

First Page

269

Last Page

283

This document is currently not available here.

COinS