Title

Temporal Decomposition for Security-Constrained Unit Commitment

Document Type

Article

Publication Date

5-1-2020

Abstract

This paper proposes a temporal decomposition strategy to reduce the computation time of security-constrained unit commitment (SCUC). The novelty of this paper is twofold. The scheduling horizon is decomposed into multiple subhorizons. The concept of coupling intervals is introduced, and a set of auxiliary counting variables and logical expressions along with their equivalent linear models are formulated to handle intertemporal ramp constraints and minimum on/off times between consecutive subhorizons. An accelerated analytical target cascading (A-ATC) algorithm is developed to coordinate SCUC subproblems and find the optimal solution for the whole operation horizon in a distributed manner. An initialization strategy is presented to enhance the convergence performance of A-ATC. The proposed algorithm is tested on four test systems.

Publication Source (Journal or Book title)

IEEE Transactions on Power Systems

First Page

1834

Last Page

1845

This document is currently not available here.

COinS