Cyclodextrin-induced fluid solution room-temperature phosphorescence from acenaphthene in the presence of 2-bromoethanol

Document Type


Publication Date



A 1:1 stoichiometric ratio and a formation constant of 130 1 mol-1 were obtained for the binary inclusion complex between acenaphthene and β-cyclodextrin (CD). On addition of 2-bromoethanol, effective quenching of the fluorescence emission and enhancement of the room-temperature phosphorescence (RTP) of acenaphthene is observed. The use of 2-bromoethanol as an external "heavy atom" to obtain room-temperature phosphorescence in fluid solutions is discussed. The RTP emission from acenaphthene included in β-CD was optimized and characterized. The apparent formation constant of the ternary associate was determined to be 880 1 mol-1 by the use of RTP enhancement in the presence of 1% 2-bromoethanol. The data indicate a ternary association between acenaphthene, β-CD and the bromo alcohol. The use of sodium sulfite, for chemical deoxygenation, to obtain RTP emission from a non-heavy atom-containing luminophor is shown to be feasible. The kinetics of the deoxygenation reaction were established and a photochemical catalytic effect on the reaction was demonstrated. © 1991.

Publication Source (Journal or Book title)

Analytica Chimica Acta

First Page


Last Page


This document is currently not available here.