Surface immobilization methods for aptamer diagnostic applications

Document Type


Publication Date



In this review we examine various methods for the immobilization of aptamers onto different substrates that can be utilized in a diverse array of analytical formats. In most cases, covalent linking to surfaces is preferred over physisorption, which is reflected in the bulk of the reports covered within this review. Conjugation of aptamers with appropriate linkers directly to gold films or particles is discussed first, followed by methods for conjugating aptamers to functionally modified surfaces. In many aptamer-based applications, silicates and silicon oxide surfaces provide an advantage over metallic substrates, and generally require surface modification prior to covalent attachment of the aptamers. Chemical protocols for covalent attachment of aptamers to functionalized surfaces are summarized in the review, showing common pathways employed for aptamer immobilization on different surfaces. Biocoatings, such as avidin or one of its derivatives, have been shown to be highly successful for immobilizing biotin-tethered aptamers on various surfaces (e.g., gold, silicates, polymers). There are also a few examples reported of aptamer immobilization on other novel substrates, such as quantum dots, carbon nanotubes, and carbohydrates. This review covers the literature on aptamer immobilization up to March 2007, including comparison of different linkers of varying size and chemical structure, 3 versus 5 attachment, and regeneration methods of aptamers on surfaces. © 2007 Springer-Verlag.

Publication Source (Journal or Book title)

Analytical and Bioanalytical Chemistry

First Page


Last Page


This document is currently not available here.